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Abstract
BPST instanton and multi-instanton solutions to Yang–Mills equations are
studied in the spin–charge separation formalism and in the related conformal
gravity formalism. In the former instantons give non-trivial solutions to a
gauged Grassmannian model, in the latter the instanton solution describes a
locally conformally flat doubly wrapped cigar manifold or a more complicated
manifold for multi-instanton solutions.

PACS numbers: 02.40.Hw, 02.40.Ma

1. Motivation

In a recent paper, Faddeev and Niemi [1] introduced new variables for the four-dimensional
SU(2) Yang–Mills theory. Their change of variables can be interpreted in terms of a separation
between the spin and the charge of the gauge field, similarly to the spin–charge separation
used in two-dimensional theories (see, e.g., [2, 3]). Their result shows also that in the maximal
Abelian gauge (MAG) the Yang–Mills theory admits a generally covariant form and relates
to a gravity theory in the limit where the metric tensor is locally conformally flat. The matter
content of the gravity theory is a combination of a massive vector field, an O(3)σ -model and
a G(4, 2) Grassmannian nonlinear σ -model that describes the embedding of two-dimensional
planes (2-branes) in R

4.
Assuming that the gravity theory flows to conformally flat geometries at low energies, the

Yang–Mills theory becomes the effective theory of gravity. The former is known to have a rich
family of classical solutions—instantons. Hence it should be of interest to see how instantons
look like from the gravity point of view, furnishing the local minima for the effective action
of gravity. So, in this paper the change of variables by Faddeev and Niemi is applied to the
BPST instanton and multi-instanton solutions.

It is important to realize that the above relation of the Yang–Mills theory to the gravity
theory has a form, typical to dualities. It mixes the perturbative and non-perturbative sectors.
In particular, the standard perturbative vacuum of the Yang–Mills theory, Aµ = 0, maps to a
singular geometry with divergent curvature and vanishing metric tensor, in other words, the
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spacetime vanishes. This does not conflict with vanishing of the action for Aµ = 0 since√
g vanishes faster than R diverges. On the other hand, the flat geometry corresponds to

a non-perturbative state in the Yang–Mills theory. That is why instantons, being the basic
non-perturbative objects, are of interest.

In section 2, a brief review of the spin–charge separation formalism is given. In
sections 3–5, the instanton and multi-instanton solutions are studied in this framework, and
the focus is on a geometrical interpretation. The results are summarized in the final section 6.

2. Spin–charge separation

We start with a short description of the spin–charge decomposition for the SU(2) Yang–Mills
action1; we refer to [1] for details. We decompose the su(2) vector-potential as

Âµ = Aµ

σ 3

2
+ Xµ+

σ−

2
+ Xµ−

σ +

2
, (1)

where we have denoted

σ± = 1
2 (σ 1 ± iσ 2) (2)

Xµ± = A1
µ ± iA2

µ. (3)

We fix the SU(2)/U(1) gauge freedom by employing the MAG condition, locally defined
as

∇±
µ Xµ± = 0, (4)

where the Abelian covariant derivative ∇± is

∇±
µ = ∂µ ± iAµ. (5)

In order to avoid Gribov copies, one can also demand that the gauge fields satisfy the global
MAG condition

A :
∫ (

�A1
µ

)2
+

(
�A2

µ

)2
d4x is minimal at � = 1. (6)

Here �Aµ is the gauge transformation of Aµ. The remaining U(1) ∈ SU(2) gauge freedom
will not be gauge fixed. Instead, we will eliminate this remaining gauge freedom by introducing
explicitly U(1)-invariant variables.

We note [1] that the direction of the U(1) Cartan subalgebra in the SU(2) Lie algebra can
be chosen arbitrarily. However, for simplicity we here proceed with a Cartan subalgebra that
coincides with the σ 3 generator of the SU(2) Lie algebra.

Following [1], we introduce the spin and the charge variables

Xµ+ = ψ1eµ + ψ2e
∗
µ Xµ− = ψ∗

2 eµ + ψ∗
1 e∗

µ,

where the complex field eµ is a complex combination of zweibeine

eµ = e1
µ + ie2

µ√
2

(8)

normalized as

eµeµ = 0 eµe∗
µ = 1. (9)

1 We also expect that some other types of decompositions of Yang–Mills variables could have gravitational
interpretation [4].
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The internal U(1)I symmetry of the decomposition is defined by the transformations

ψ1 → eiλψ1 (10)

ψ2 → e−iλψ2 (11)

φ → φ − 2λ (12)

eµ → eµ e−iλ. (13)

We can factor out the U(1)I phase variable as follows: if e0 �= 0, we define η to be the
complex phase of e0 and

êµ = e−iηeµ, (14)

if e0 = 0, we can use other charts to define η, so it is a section of U(1)I bundle over
G(2, 4, R) × R

4. The real Grassmannian G(2, 4, R) specifies the 2-plane, in which non-
Abelian components of the gauge field lie, for more details see [1].

The variable ρ is defined as

ρ2 = (
A1

µ

)2
+

(
A2

µ

)2 = Xµ+Xµ−. (15)

It corresponds to the gauge invariant minimum of the functional (6) prior to any gauge fixing,
so it is gauge invariant. We note in passing that it is related to the dimension-2 condensate of
[5–8].

An explicit parameterization for ψ1,2 in (7) is given by

ψ1 = ρ eiξ cos
θ

2
e−iφ/2

(16)
ψ2 = ρ eiξ sin

θ

2
eiφ/2.

We introduce the U(1)I gauge field as a Maurer–Cartan 1-form

Cµ = i〈e∗, ∂µe〉. (17)

Define also the U(1)I invariant gauge field

Ĉµ = i〈ê∗, ∂µê〉 = Cµ + ∂µη (18)

and the U(1) × U(1)I invariant 3-vector

	n =
⎛
⎝sin θ cos(φ − 2η)

sin θ sin(φ − 2η)

cos θ

⎞
⎠ (19)

n± = n1 ± in2 = sin θ e±i(φ−2η). (20)

The tensor Pµν is

Pµν = 1
2ρ2n3P̃µν, (21)

with P̃ given by

P̃µν = i(eµe∗
ν − eνe

∗
µ). (22)

A doublet of U(1) × U(1)I invariant, mutually orthogonal and unit normalized 3-vectors
p and q can also be used in lieu of the zweibeine:

pi = 1
2 P̃i0; qi = 1

4εijkP̃jk (23)
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p · q = 0; p · p + q · q = 1
4

p · p = 1
2e0e

∗
0; q · q = 1

4 − 1
2e0e

∗
0 .

(24)

Finally, we define the combined U(1) × U(1)I covariant derivatives

Dµψ1 = ∂µψ1 + iAµψ1 − iCµψ1 (25)

Dµψ2 = ∂µψ2 + iAµψ2 + iCµψ2 (26)

Dµeν = ∂µeν + iCµeν (27)

and the U(1) × U(1)I invariant current

Jµ = i

2ρ2
{ψ∗

1 Dµψ1 − ψ1D̄µψ∗
1 + ψ∗

2 Dµψ2 − ψ2D̄µψ∗
2 }. (28)

In terms of these variables the standard classical Yang–Mills Lagrangian with a gauge
fixing term for the off-diagonal components is [1]

L = 1

4

(
F i

µν

)2
+

ξ

2

∣∣∇+
µXµ+

∣∣2
(29)

= 1

4
F2

µν +
1

2
(∂µρ)2 +

1

2
ρ2J 2

µ +
1

8
ρ2

(
DĈ

µ 	n)2
+ ρ2((∂µq)2 + (∂µp)2)

+
1

4
ρ2{n+

(
∂a ˆ̄eb

)2
+ n−(∂aêb)

2} +
3

8

(
1 − n2

3

)
ρ4 − 3

8
ρ4 − 1

2
∂ν∂µ(Xµ+Xν−), (30)

where in the second equality we have taken the ξ → 1 limit corresponding to the particular
MAG condition (4) and

Fµν = ∂µJν − ∂νJµ +
1

2
	n · ∂µ	n × ∂ν 	n − {∂µ(n3Ĉν) − ∂ν(n3Ĉµ)} − ρ2n3P̃µν (31)

(
DĈ

a

)ij = δij ∂a + 2εij3Ĉa (i, j = 1, 2, 3). (32)

3. One instanton configuration in spin–charge separated variables

We recall the explicit BPST one-(anti)instanton solution of the SU(2) gauge theory [9], in the
singular gauge it reads

Aa
µ(x) = �2 2ηaµνx

ν

x2(x2 + �2)
, (33)

where ηaij = εaij ; ηa4ν = −ηaν4 = −iδaν is the ’t Hooft tensor [10] and for simplicity we
have centered the instanton at the origin. It is widely known and can be easily verified, that
this explicit representation obeys the MAG conditions (4). In particular, the explicit solution
(33) is known to be the global gauge orbit minimum of the MAG gauge fixing functional∫

d4xρ2,

thus it also obeys the global MAG condition (6). We note that this configuration lies on the
Gribov [11] horizon, and the explicit ghost zero modes have been constructed in [12]. Thus
(33) is a singular point in the field space, where the fundamental modular region reaches the
Gribov horizon.

The instanton solution (33) depends on five parameters, the instanton size � and the
four components Xm of the vector that defines the instanton position. These leave the MAG

4
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condition intact. Furthermore, when one introduces global SU(2) gauge-rotations in the right-
hand side of (33) the total number of free parameters of a single-instanton solution becomes
eight. Since a global gauge rotation is equivalent to a spacetime rotation of the solution, the
global gauge rotation also does not violate the MAG condition.

Note that, in general, one could expect that the MAG condition fixes the global
SU(2)/U(1) gauge freedom. However, for instanton it does not, which also indicates that
the instanton is located on the Gribov horizon. We also note that in [13] a continuous family
of gauge transformations, smoothly interpolating between regular and singular gauges and
satisfying the differential version of the MAG gauge condition has been presented. This
suggests that all of them should comprise a valley of degenerate classical solutions for the
resulting action. But here we only consider the singular-gauge solution since only this solution
lies in the fundamental modular domain.

We now proceed to rewrite the instanton solution in the spin–charge separated variables.
We use the relation [10]

ηaµνηbµλ = δabδνλ + εabcηcνλ

to get

ρ2 = 8�4

(�2 + x2)2x2
. (34)

The zweibein ea
µ(x) defines the 2-plane in which Aa lies

ea
µ = ηaµν

xν

x
. (35)

This choice corresponds to a particular fixing of the U(1)I gauge freedom: the U(1)I phase
η which is defined in (14), is now constant. Hence it disappears entirely. Note that ea

µ is
ill-defined in the origin but we shall find that the underlying geometry removes this point.

When we choose a gauge where ψ1,2 are both real (this fixes both the U(1) and the U(1)I
gauges) we have by definition that

A1
µ = (ψ1 + ψ2)e

1
µ (36)

A2
µ = (ψ1 − ψ2)e

2
µ. (37)

So we find

ψ1 = ρ and ψ2 = 0 ⇒ θ = 0, (38)

which means that the 3-vector 	n, defined in (19), points identically to its third (vacuum)
direction. Thus this vector field has no classical dynamics.

Generally, n3 = ±1 is achieved when
(
A1

µ

)2 = (
A2

µ

)2
, and a nontrivial 	n accounts for

deviations from this equality.
From (23) we calculate the vectors p and q:

pi = xµxν

2x2
(η1iνη24µ − η2iνη14µ) (39)

qi = xµxν

2x2
εijkη1jµη2kν . (40)

The internal connection (the one characterizing the U(1)I gauge bundle) defined in (17), is

Cµ = η3µν

xν

x2
=

{x2

x2
,−x1

x2
,
x4

x2
,−x3

x2

}
. (41)
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The U(1) × U(1)I invariant current is simply

Jµ = Cµ − A3
µ. (42)

Since 	n is trivial, we conclude that the BPST instanton is also a classical solution to the
equations of motion for the restricted Yang–Mills Lagrangian

L = 1
4F

2
ab + 1

2 (∂aρ)2 + 1
2ρ2J 2

a + ρ2((∂µp)2 + (∂µq)2) − 3
8ρ4 − 1

2∂ν∂µ(Xµ+Xν−), (43)

where

Fab = ∂aJb − ∂bJa − {∂a(Ĉb) − ∂b(Ĉa)} − ρ2P̃ab

= −∂aAb + ∂bAa − ρ2P̃ab. (44)

Note that for the anti-instanton we find the same solution but with ’t Hooft symbol replaced
as η → η̄. To account for arbitrary color orientation of (anti-)instanton, one has to rotate all
spacetime indices by the SU(2) matrix acting as SU(2)L(R) subgroup of SO(4) or Lorentz
group.

We now turn to the generally covariant formulation of [1]. There, it is proposed that ρ

can be viewed as the conformal scale of a conformally flat metric tensor,

g = 14×4(ρ/�)2, (45)

where � is a constant with the dimension of mass which we need to introduce since ρ is
dimension-2 operator while the metric tensor is dimensionless. It is beyond the scope of
the present paper to estimate a numerical value for �, a possible choice would be to make
� = �QCD , alternatively, � could coincide with the v.e.v. of dimension-2 condensate
(studied in [5–8]), that can be computed. The classical Yang–Mills Lagrangian describes the
ensuing locally conformally flat Einstein–Hilbert gravity which is coupled to matter and with
a nontrivial cosmological constant. The matter multiplet consists of the massive vector field
Jµ, the O(3)σ -model described by 	n and the nonlinear Grassmannian σ -model G(4, 2) which
is described by the zweibeine fields ea

µ. But in the reduced case (43) the O(3) matter field 	n
is decoupled on the classical level (it is classically trivial).

The reduced generally covariant gravitational Lagrangian which is relevant for the present
case where 	n is fixed to {0, 0, 1} reads [1]

L = 1

4
√

ggµνgρσFµρFνσ +
�2

12
R

√
g +

1

2
�2√ggµνJµJν + �2 · √

g · gµνgλη
(
D̄σ

µλ�̄σ

)(
Dκ

νη�κ

)
− 3

8
�4√g +

1

2
∂µ(ρ∂µρ) − 1

2
∂ν∂µ(Xµ+Xν−). (46)

Here �µ is a covariant generalization of the zweibein ea
µ, obtained with the vierbein Ea

µ:

gµν = δabE
a
µEb

µ (47)

�µ = Ea
µea. (48)

Note that the original Yang–Mills indices are here redefined from Greek to Latin. All variables
are also pulled to the curved space with the help of the vierbein, and we refer to [1] for details
and for the full Lagrangian.

Note the appearance of two boundary terms in the action. Both are non-trivial for the
instanton solution, and their contribution can be localized to a small sphere that surrounds the
singular point x = 0 that corresponds to a gauge singularity. The contribution to the action
from these two boundary terms cancel each other, they have the exactly opposite limits when
x → 0.

6
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We now proceed to the spacetime geometry described by the instanton solution. We find
for the metric tensor (45)

g = 14×4(ρ/�)2 = H 2 �4

(�2 + x2)2x2
14×4, (49)

where we have introduced a constant H 2 ≡ 8/(�2).
The scalar curvature of this metric is

R(x) = − 18r4

H 2�4
+

36r2

H 2�2
+

6

H 2
; r ≡ |x|. (50)

In order to inspect the structure of the ensuing manifold, we first rewrite the conformally
flat metric in spherical coordinates

gµν dxµdxν = (ρ/�)2((dr)2 + r2(d�3)
2). (51)

After the change of variables

r = �√
e2z − 1

(52)

the metric becomes(
ds

H

)2

= (dz)2 + (1 − e−2z)2(d�3)
2. (53)

When z → 0 which correspond to infinity in the initial coordinates, this metric becomes(
ds

H

)2

≈ (dz)2 + 4z2(d�3)
2. (54)

Note the curvature singularity at the point z → 0. In the vicinity of this point the spacetime
approaches R

4 in spherical coordinates, but the spherical surfaces S
3 are doubly covered.

When z → ∞, which correspond to the location of the center of the instanton in the
original coordinates, the metric rapidly approaches that of S

3×(0,∞), and the scalar curvature
approaches the constant value 6/H 2. Consequently, asymptotically we have a cylinder of
radius H and the geometry is that of an infinite, asymptotically cylindrical cigar which is
doubly wrapped at its beginning2. Note that in terms of the original coordinates the beginning
of the cigar corresponds to the spacetime infinity and the infinite cylindrical end of the cigar
corresponds to the center of the instanton.

We conclude that the instanton develops a finite radius hole at the position of its center,
with the resulting change in the topology and boundary of the spacetime.

Note that the geometry also resolves the directional singularity that we have in the
Grassmannian matter field eµ (see (35)): since the cylindrical cigar has asymptotically constant
radius, the Grassmannian vector field becomes well defined. Explicitly, in the new coordinates
the covariant version of the Grassmannian zweibein field for z � 1 reads

� ≈ H eiφ

√
2

[sin δ(i cos δ + cos θ sin δ) sin θdφ + (cos δ cos θ − i sin δ) sin δdθ + sin θdδ],

(55)

where φ, θ, δ are the standard spherical coordinates on S
3. This expression has only complex

phase singularities which are irrelevant from the point of view of the Grassmannian σ -model;
these singularities only appear in the U(1)I gauge degree of freedom.

2 I gratefully acknowledge the help of Joe Minahan in clarifying the questions of geometry.
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As z → 0 the zweibein is also non-singular and tends to zero

� ≈ Hz
√

2 eiφ[sin δ(i cos δ + cos θ sin δ) sin θdφ

+ (cos δ cos θ − i sin δ) sin δdθ + sin θdδ]. (56)

It is interesting to compare the boundary terms in (46) with the standard boundary term
for Einstein gravity for spacetimes with boundaries [14]. There, the boundary terms appear
when second derivatives are removed. Here, the action is already in the first-order form and
instead we go to the opposite direction,

1

2
(∂µρ)2 → �2

12
R

√
g +

1

2
∂µ(ρ∂µρ). (57)

We conclude that the Gibbons–Hawking [14] boundary term is 1
2∂µ(ρ∂µρ) and vice versa,

1

2
(ρ∂µρ) = −�2

6
gab(∇ea eb)µ = −�2

6
�ν

νµ, (58)

where ea are the basis vector fields and � is a Christoffel connection. The right-hand side
of (58) contracted with the normal vector to the boundary surface is the trace of the second
fundamental form and it presents the generally covariant form for the boundary term.

Finally, we only note that the meron solution [15]

Aa
µ(x) = η̄aµνx

ν

x2
(59)

also obeys the MAG condition, and it has the same type of singularity at its center as the
instanton. At infinity the geometry is quite different. Since the analysis is straightforward we
defer the details.

4. Multi-Instanton case

We now proceed to study the interpretation of a multi-instanton solution. However, due
to technical difficulties and transparency of the presentation we only consider explicitly the
simplest case, described by an approximate superposition of two instantons. The general case
can be investigated by employing the ADHM construction [16] but will not be studied here;
we expect that our qualitative results persist in the most general case.

Consider first the non-overlapping limit of two BPST instantons, yi � �j where yi are
the position 4-vectors for the instantons. In this limit the metric tensor is

g = H 2

(
�2

1

(�2
1 + (x − y1)2)|x − y1|

+
�2

2

(�2
2 + (x − y2)2)|x − y2|

)2

14×4. (60)

Clearly, near the centers of the instantons the metric is again similar to a cylinder
S

3 × (0,∞) of radius H.
We define �2 = �2

1 + �2
2 and change the radial variable as |x| = r = �√

2z
. We also

introduce S
3 spherical coordinates for the remaining variables. Note that for the large r the

variable z tends to z of the one-instanton case. The metric now becomes

ds2 = H 2 �2

(2z)3

(
�2

1(
�2

1 + (x − y1)2
)|x − y1|

+
�2

2(
�2

2 + (x − y2)2
)|x − y2|

)2

× ((2z)2(d�3)
2 + (dz)2), (61)

where (d�3)
2 = (dδ)2 + (sin δdθ)2 + (sin δ sin θ dφ)2.

8
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To the leading order r � y (i.e. z � 1) this yields(
ds

H

)2

= ((2z)2(d�3)
2 + (dz)2). (62)

We here have again the doubly covered sphere S
3 of radius z that characterizes the beginning

of the cigar in the single instanton case. As z grows, these spheres become deformed and near
each of the instanton centers the metric diverges forming asymptotically an infinite cylinder
S

3 × (0,∞) of radius H. Note that the boundary of the space again corresponds to the centers
of the instantons, and the singularity in the Grassmannian vector field become resolved in the
same manner as in the single instanton case.

5. Monopole loops

It was argued in [13] and also seen directly from various numerical computations [17] that the
multi-instanton solutions in the MAG have monopole loop singularities (see also [18] for an
analytic example). It means that, really, an instanton ensemble in MAG is not a superposition
of singular gauge instantons. Instead, a more general gauge transformation with singularity
along some contour (a.k.a. monopole loop) is needed to satisfy the global MAG condition (6).
An explicit, analytic form of a monopole loop is not known for a generic instanton ensemble.
But for the dilute case it is known that the loops are small, circular and non-percolating (see
[13] for explicit expressions).

To construct the monopole loop one applies the gauge transformation

�† = eiγ τ3/2 eiβτ2/2 eiατ3/2,

where

α = φ − ψγ = π − φ − ψ (63)

and

β = 2θ − arctan
u

v + R
− arctan

u

v − R
(64)

to the anti-instanton in the singular gauge (or its conjugate � to the instanton). Here the
coordinates

x1 + ix2 = ueiφ x3 + ix4 = veiψ

are used. This gives a monopole loop of radius R that lies in the (3–4) plane and can be
arbitrarily reoriented by a global gauge transformation.

The corresponding value of ρ2 is

ρ2 = 8((�2 − R2)2u2 + (�2 + R2)2v2)

(�2 + u2 + v2)2(R4 + 2(u2 − v2)R2 + (u2 + v2)2)
. (66)

At R = 0 the above equation reduces to (34) for the singular gauge instanton. The singularity
here forms a ring of radius R. Near this ring the condensate is

ρ2 = 2

z2
+

2(�2 − 3R2) cos(η)

R(�2 + R2)z
+ O(z0), (67)

where we used natural coordinates for a ring: z cos η = (v − R); z sin η = u with η ∈ [0, π).
The 3-vector n is again trivial n = {0, 0, 1}, so

ψ1 = ρ ψ2 = 0

9
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and the zweibein field is simply related to the new gauge transformed potential

eµ = A1
µ + iA2

µ√
2ρ

. (68)

Keeping only the first term in (67) we analyze the qualitative behavior of the corresponding
geometry. In coordinates ψ (angular position on the ring), z, η, φ (spherical coordinates around
ring points) the metric associated with ρ2 becomes

ds2 ≈ 2

�2z2
(R2 dψ2 + dz2 + z2 dη2 + z2 sin2ηdφ2). (69)

Changing the variable z = He−y results in(
ds

H

)2

≈ 1

4
(e2y(R/H)2 dψ2 + dy2 + dη2 + sin2 η dφ2). (70)

Thus the space is like infinite cylinders (η, φ, y) ∈ S
2 × (0,∞) of radius H/2 over each point

of the circle, parameterized by ψ . Cylinders over different points spread away from each other
exponentially fast as one moves along them (i.e. increases y). The scalar curvature tends to
zero exponentially fast with increasing of y.

When we are far from the monopole loop, the results obtained for the singular gauge
are valid, thus the total geometry looks like S

3-cylinder that becomes split into infinite S
2

cylinders. In terms of the variable z introduced for analysis of singular gauge instanton in
(52), the splitting occurs at z ≈ log(�/R). The resulting cylinders with S

2 profiles are fibered
over one of the S

1 sections of S
3, depending on the orientation of the monopole loop. This

splitting can be illustrated in lower dimensions in terms of gradual transition from a sphere to
a torus.

In the coordinates {y,ψ, η, φ}, used above, the Grassmannian field �, defined in (48),
takes the form

� = i ei(φ+ψ)H(�2 − R2) sin(η)

2(�2 + R2)
dψ +

ei(φ+ψ)H

2
dη +

i ei(φ+ψ)H sin(η)

2
dφ + O(e−y). (71)

We again observe that the geometry resolves a directional singularity of the initial field
eµ: the new field �, defined on the space with metric (45), is non-singular. The singularity
near the monopole loop is mapped to a boundary surface at infinity.

6. Discussion

In summary, we have elaborated on the observation [1] that the Yang–Mills action in the MAG
gauge can be viewed as a locally conformally flat limit of a gravitational theory that involves
the Einstein action and a cosmological constant in interaction with matter fields.

We have inspected the BPST instanton in this formalism and found that the spacetime
has the shape of a doubly wrapped cigar. For a multi-instanton, we expect a spacetime with
several cigar-like cylinders, growing from different singular points as deformations of the
space. These cylinders asymptotically approach (0, a) × S

3 and then split into (a,∞) × S
2

cylinders fibered over S
1 ⊂ S

3.
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